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Abstract. The modern scientific data processing is not only a collection of powerful algorithms
but also a whole infrastructure of facilities for data reading, processing, and results output.
As the amount of data grows, so grows a need for automation of the process. The proper
automation requires not only improvement of existing frameworks, but also a search of new
ways to organize data processing in a way it could be automated and parallelized. DataForge
experimental framework solves some problems by making the analysis configuration declarative
instead of imperative. In this article, we present a limited demonstration of the idea applied to
“Troitsk nu-mass” experiment in the search for sterile neutrino.

1. Introduction
The DataForge is an experimental data processing framework designed to leverage declarative
configuration, lazy computations, and automatic task parallelization and output management.
In the previous article [1], we discussed major concepts behind the design of the DataForge
framework prototype. While the scientific community was quite responsive to ideas, presented
in the article and in project documentation, it soon became obvious that it is very hard to
discuss pros and cons of the approach without actual example. The DataForge prototype was
developed and implemented at “Troitsk nu-mass” experiment ([2–4]), so we will describe current
analysis layout of DataForge-based analysis for this experiment.

2. Basic concepts
In order to achieve the required automation level, DataForge requires for data, computation
environment and task definition to be defined in a declarative way, which allows simple
verification and comparison. It is possible to use framework tools for the classic scripting
approach, but in this case, it loses its advantage compared to script-based frameworks. The
paradigm could be summarized in a few basic concepts:

• Data: A data from experiment or simulation. According to DataForge paradigm, data
is always immutable, meaning it could be neither created, nor mutated. Contrary to the
scripting approach, intermediate analysis results are automatically managed and cached
by the framework but in general not accessible by a user. This restriction solves the
major problem of an invalid intermediate state which plagues the analysis everywhere.
An additional benefit is that intermediate state, which is not required for the final result
is not calculated, automatically saving computation time. The state which is reused could
be automatically cached by the system because the results are uniquely determined by
meta-data.
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Figure 1. Raw data tree structure for
“Troitsk nu-mass” experiment.
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Figure 2. Analysis and result
directory structure.

• Meta-data: Configuration data, which partially comes with data and partially represents
user analysis configuration. Meta-data has two important features: it could be easily
validated and merged. Validation means that one could clearly define analysis by its meta-
data configuration and check if a new result is obtained with a different configuration. This
could not be done with scripts, because in the script there is an infinite number of ways to
define the same process. Merging allows making structured configuration analysis, meaning
that some parameters could be defined for the whole data set instead of a single piece of
data. Also one could override general analysis rules for specific data pieces.

• Context: The environment for the computation. The context is isolated from the system
environment and could be defined in a reproducible way inside the framework. The
context could be customized by plugins adding new functionality and customizing output
for analysis, but context could not be changed during the analysis itself, so it is not possible
to introduce a shared mutable state for analysis tasks.

3. Input data
Since DataForge relies heavily on meta-data coming with data, it is convenient to use a container
that will contain both data and meta-data. This container is called an envelope and from the
programmatical point of view is just a class with two fields: data which is a general binary and
a meta which is a meta-data tree. This container could be serialized in or deserialized from a file
using various meta-data text representations (like JSON, XML or a binary representation). The
file contains an additional short binary header to save information about meta length and meta
encoding. This allows reading and parsing the meta-data block from the file without loading the
whole file into memory. The text format is preferred for meta-data because it allows interpreting
the result by just opening a file in a text editor and reading its header.

The “Troitsk nu-mass” run data is represented in a following way (see Fig. 1):

• The data tree root is a regular file system directory.

• The directories under the root represent experimental runs and named after year and month
of the data acquisition start like 2017 05.
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• The run could have an inner structure represented by sub-directories containing either so-
called tritium data (actual measurements with the tritium in the source) or calibration
data.

• The directories with data contain numbered measurement directories called set (like set 1,
set 2, etc.), each containing a single high voltage scan as described in [3].

• Each set contains a number of individual measurement points for fixed high-voltage values,
a file for high-voltage monitoring measurements and a file with set meta-data containing
information about the set as a whole (start time, readout system state, etc.). All files are
envelopes, meaning they contain a meta header alongside the binary or textual data. In
the case of points, the data part of the envelope is represented by a Protobuf ([5]) encoded
message with optional zip compression (the compression is defined by the flag at point
meta-data).

• Slow control data for the whole run is usually placed in the run root directory in a DataForge
envelope format with a simple ASCII text table.

This structure is obviously very well suited to be used with DataForge meta-data processor
paradigm, and in this case has an advantage compared to frequently used data storage systems
like ROOT-IO ([6]) or HDF5 ([7]). It allows to copy small portions of the data from one computer
to another and easily load individual points into memory, allowing analysis program to keep low
memory footprint without sacrificing performance. Also, it delegates problems like parallel data
access, data integrity checks, etc to the modern file system instead of implementing them inside
the framework. One should note that DataForge itself does not impose any restrictions on binary
input or output format. One could use one of main-stream formats like Protobuf, compressed
text or even ROOT IO binary. The specific type of data is inferred by the reader based on
meta-data.

The analysis configuration is separated from the data directory tree and usually have a
single configuration file for the whole data run and .dataforge directory for output and caches
in the same directory (Fig. 2). The configuration file is basically meta-data itself and could
be represented as JSON, XML or Groovy ([8]) script that generates such configuration in more
compact way. One should note, that while Groovy script is imperative itself, it is used only
to generate declarative configuration, it does not interact directly with the framework. The
configuration defines a context and its plugins, data root reference and one or several target
configurations (meta-data for specific data set). A typical target configuration is presented in
the following code block.

//define a configuration for a single sub-run

target("fill_2"){

data{ //Configuration for data selection

include(pattern: "Fill_2.set_2.")

}

analyzer{ // Configuration for amplitude spectrum analyzer.

t0(crFraction: 0.05, min: 1.5e4)

window(lo:500, up:3000)

}

//Merge flag. If this line is commented, all sets are evaluated individually

// instead of merging them in one table.

merge(mergeName: "fill_2")

fit{ // Fit task parameters

//Define the model to fit data against

model(modelName: "sterile"){
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// Parameter for model, including interaction in source and spectrometer

}

// Starting point for fit and errors

params{

N(value: 8e5, err: 1e4, lower:0)

bkg(value: 3, err:0.1)

//other parameters

}

// Custom fit stages

stage(freePars: ["N", "bkg", "E0"])

stage(freePars: ["N", "bkg", "E0", "U2", "trap"])

}

// Configuration for sterile neutrino mass scan

scan(masses: [0.5, 1.0, 1.5, 2.0, 2.5, 3.0])

}

The syntax for configuration is following: node(a: 2, b: "string){<children>} is
transformed into meta-data node with name node, leafs a and b with appropriate values and
inside of {<children>} block defines child-nodes.

4. Task evaluation
The analysis logic is defined by tasks. A task is a lazy computation which is performed on a
data tree and in turn returns a new data tree (it does not modify anything in the initial data).
The task could depend on another task or on initial workspace data, but not on external files,
which means that the whole analysis is self-contained and could be viewed as a directed graph
of computations leading from initial data to the result, the user requested. It is not possible to
describe the whole task structure for “Troitsk nu-mass” analysis (about 15 different tasks), so
we will limit ourselves with a short explanation of task inner workings.

In order to compute something, use must define or get a task (pre-loaded tasks are accessed
by their name) and the meta-data (target). Task evaluation is in general done in three steps:

(i) Resolve task dependency tree. Each task can resolve its own dependencies based on
the input meta. The dependency is either data or the result of another task (in this case
task passes configuration to its dependency, modifying it if needed). At this stage, no
computations are done and result meta-data is not generated.

(ii) Compute lazy result. Tasks resolve their actual input based on input data and its meta.
Then each task calculates its output node (it is not a single element, but in general a
tree-like object). As a result, user gets a DataNode object which contains all requested
results. Ideally, at this stage, no actual computations are done. Inside each element of
DataNode resides a computation graph that connects initial data elements to the result.
Some fractions of this tree could be replaced by cached elements in case the computation
with a given meta was done before.

(iii) Running the computation graph. The actual computation starts only when the user
tries to get the result from DataNode. One can select only a fraction of DataNode and it
will request only the data which is actually used in the result and only those computations
which are required. All actions are automatically parallelized so if some branches of the
computation graph do not intersect they are automatically computed in parallel, without
additional effort from the user. One does not need for all elements in a task to finish in order
to start independent elements in the next task. It allows avoiding computation bottlenecks.
For example, if you have a parallel computation graph, where one single data element takes
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a long time to calculate, the system won’t stop everything for this specific element, it will
proceed with other tasks, which do not depend on this element.

It is possible that some tasks could not be resolved in a lazy way. In this case, task is called
terminal and its results are calculated immediately at the second stage.

The DataForge supports basic task templates like

• Pipeline, where all elements of DataNode are evaluated independently in the same way (with
possible customization for each element based on its meta).

• Join, where one waits for several elements from data or dependent tasks and then combines
them.

• Split, where each incoming elements is transformed into results with fixed types.

The only tricky part is to implement tasks so the result meta is calculated without triggering
the computation itself. As a compact example of pipe task we can look into analyze task, which
computes the amplitude spectrum from the raw data (the tasks are written in Kotlin - [9, 10]):

val analyzeTask = task("analyze") {

model { meta ->

dependsOn(selectTask, meta)

configure {

"analyzer" to meta.getMetaOrEmpty("analyzer")

}

}

pipe<NumassSet, Table> { set ->

val res = SmartAnalyzer().analyzeSet(set, meta.getMeta("analyzer"))

val outputMeta = meta.builder.putNode("data", set.meta)

context.output.render(res, stage = "numass.analyze", name = name, meta = outputMeta)

return@pipe res

}

}

Here we can see two blocks. The model block defines the dependencies of the task and takes
all necessary parameters from external configuration (it could also validate those parameters
and throw an error during the configuration phase). And the second pipe block uses a template
to transform the data for a single input element in a type-safe way, without thinking about data
structure and parallelization. Output renderer requires additional explanation.

5. Directory-based output
An important feature of the framework is the customizable asynchronous output. The general
way to send something to output is to use OutputManager plugin which allows creating output
channels using two identifiers: stage(designates the process that produces the output) and
name(designates the specific data pieces for which the output is produced).

For example, in ”Troitsk nu-mass” we by default use the so-called directory-based output.
The working directory. In this case the stage parameter is transformed into a directory
name and name is used as a file name. For example analyze task sends its output to
.dataforge/numass/analyze directory and file name corresponds to the name of the input
set. The directory-based output uses a different output format depending on the type of object
which has been passed to it. In this particular case, the table is transformed into a human-
readable ASCII text table, wrapped in an envelope with provided meta, so one knows which
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meta was used to produce this result without additional analysis journal. The layout of the
output directory is demonstrated in Fig. 2.

The output could also be forked. In this case, the same object is sent simultaneously to two
different output renderers. During the analysis, we usually fork the output and send the result
both to the output directory and to graphical interface to be presented as a plot or table. All
output actions are done asynchronously, so they do not affect the primary computation.

6. Conclusion
The DataForge framework presents a way to implement scientific data processing in a declarative
way rather than using the imperative (scripting approach). It allows for solving some problems
of modern data processing like automatic parallelization and validation of intermediate data. It
also allows excluding the calculation of intermediate results that are not required for a specific
task and establishes a robust way to treat input and output. The major drawback is that tasks
could take only simple meta-data trees as a parameter. Meaning that one needs to create a new
task or pre-compiled function for anything else.

The current DataForge prototype code could be found at https://bitbucket.org/Altavir/
dataforge/src/dev. Limited documentation is available in [11] The modules, developed for
“Troitsk nu-mass” experiment are located at https://bitbucket.org/Altavir/numass/src/

dev.
Currently, there is an ongoing work to rewrite the core functionality of the framework from

scratch using Kotlin language: https://github.com/altavir/dataforge-core.
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